Osteology

Bio 250
Anatomy & Physiology

Classification of Bones on the Basis of Their Shape

- Long bones, e.g. arms and legs
 - Epiphysis covered with articular cartilage
 - Diaphysis or shaft
 - Periosteum
 - Compact (cortical) bone (Functional unit: Osteon)
 - Cancellous or spongy (trabecular) bone
 - Marrow (medullary) cavity
 - Endosteum
 - Metaphysis

FIGURE 4.2
Classification of bones on the basis of shape.
Classification of Bones

- Short bones, e.g. wrists and ankles
 - Cubical shape
 - Compact outer shell
 - Cancellous inner core
 - Marrow
 - Periosteum
 - Articular cartilage

Classification of Bones

- Flat bones, e.g. ribs and some skull bones
 - Inner/outer surface of compact bone
 - Inner core of cancellous bone
 - Marrow
 - Periosteum

Classification of Bones

- Irregular bones, e.g. mandible and vertebrae
 - Outer compact bone
 - Inner core of cancellous bone
 - Periosteum
 - Can have articular cartilage
Sesamoid bones ("looks like" sesame seed), e.g. patella

- Formed within fibrous membrane
- Sutural or Wormian bones of skull

Compact (Cortical) Bone

- Organized into Osteons (Haversian Systems)
- Microscopic unit of structure/function
- Central canal with blood supply
- Lamellae composed of matrix
- Lacunae with osteocytes
- Canaliculi containing interstitial fluid
- Perforating canal's containing blood vessels interconnecting osteons.

Cancellous (Trabecular) Bone

- Also called spongy bone
- Formed of interconnecting bone rods or plates called trabeculae
- Trabeculae consist of lamellae containing osteocytes
- Typically no blood vessels penetrate the trabeculae
- Found primarily lining the medullary cavities and forming the interior of epiphyses
Bone Growth and Development

- No osseus tissue prior to 10 weeks in fetus
- Early skeleton composed of:
 - Fibrous membrane in flat bones of skull
 - Hyaline cartilage in rest of skeleton
- By 10-12 weeks bony tissue begins to replace fibrous tissue and cartilage

Intramembranous Ossification

- Membrane-like layers of connective tissue
- Undifferentiated connective cells
- Many blood vessels
- Some cells form osteoblasts and produce cancellous bone matrix
- Cells on outside form periosteum
- Osteoblasts inside periosteum form compact bone

Fontanels

- “Soft” spots at the corners of adjoining bone plates
- Aids in the birthing process
- Close by 20-24 months after birth
Endochondral Ossification

- Primary ossification center in diaphysis
- Secondary centers form in epiphyses
- **Epiphyseal (growth) disk** remains between end and shaft of bone
 - Disk consists of resting, young reproducing, old enlarging and dying cells
 - Disk responsible for longitudinal growth in long bones
- Hyaline cartilage remains on the articular surfaces

Bone Growth

- Long bones can grow in circumference during our entire life
- Long bones can grow LONGER only while there is a functional epiphyseal disk of hyaline cartilage
Longitudinal Bone Growth

- Requirements for longitudinal growth:
 - Functional epiphyseal disk (Achondroplasia)
 - Growth hormone (Pituitary Dwarfism)
 - Vitamin D (Rickets / Osteomalacia)
 - Vitamin A (Bone resorption during development)
 - Vitamin C (Collagen synthesis)
 - Thyroid Hormone (Promotes ossification of Cartilage)

Figure 4.13 Two siblings at the right, grown with her Kaprezian at normal height. In an achondroplastic dwarf with a height of about 120 cm tall, the parents were of normal height. Both females with this dwarfism are osteoarthropathic. Achondroplasia has little effect on the metaphysis of the long bones.

Longitudinal Bone Growth

- Ossification occurs at the diaphyseal side of growth disk
- Expansion of the growth disk occurs by mitosis of chondrocytes on the epiphyseal side of the growth disk
- As long as these processes are balanced, long bones continue to lengthen
Bone X-ray showing presence of growth disks

Figure 7.11
The presence of epiphyseal disks (arrows) in a child's bone indicates that the bone is still lengthening.

Growth
Bone grows in length because:

1. Cartilage grows here
2. Cartilage replaced by bone here
3. Cartilage grows here
4. Cartilage replaced by bone here

Articular cartilage

Remodeling
Growing shaft is remodeled by:

1. Bone resorbed here
2. Bone added by appositional growth here
3. Bone resorbed here

Epiphyseal plate

Epiphyseal cartilage

Epiphyseal lines
Puberty brings end to long bone growth

- Sex hormones rise during puberty
- Stimulate ossification at growth disk
- Cause “closure” of growth disk
- Growth typically ceases by age 18 in girls; 20 in boys

Circumferential Bone Growth

- Osteogenic layer of periosteum produces osteoblasts
- Osteoblasts add additional bone matrix
- Osteoclasts remodel interior of medullary cavity to lighten bone

Structure/Growth of the Periosteum

Fig. 3-4: Diagram of the process whereby bone increases in circumferential. New layers of bone are produced by cells of the osteogenic layer of periosteum in appositional growth.
Bone Matrix

- Bone is a hard connective tissue
- Matrix about 1/3 organic (mostly bone collagen)
- Matrix about 2/3 inorganic (mostly calcium phosphate (85%) and calcium carbonate (10%); some fluoride, magnesium, potassium, sulfate, hydroxyl and sodium ions that are adsorbed to the calcium phosphate crystals)

Bone and Mineral Homeostasis

- Osteoblasts deposit minerals from blood into bone matrix after meal (Calcitonin)
- Osteoclasts remove and release minerals from bone into blood during fasting (PTH)
- Actions of osteoblasts and osteoclasts important in bone remodeling and mineral homeostasis
- Dietary deficiency of Calcium causes demineralization of osseus tissue
Control of Bone Remodeling

- The extensive remodeling that occurs constantly is regulated by two different processes
 - One process works to maintain mineral homeostasis in the blood (previous slide)
 - One process works to strengthen bones along lines of stress (next slide)
 » to make bones strong as needed to support the stresses placed on the body
 » Compression and tensional forces create weak electrical currents that stimulate osteoblasts

Wolff’s law-
Bones remodel in response to stresses placed on them
Note: Stresses are primarily on the bones surfaces so they can be hollow (light) and have needed strength.

Fracture Repair
Bone Marrow

- Yellow bone marrow in most adult bones and all medullar cavities
- Red bone marrow (hemopoietic tissue):
 - bodies of vertebrae
 - flat bones of skull
 - sternum
 - ribs
 - proximal epiphyses of femur and humerus
 - pelvis

Articulations (Joints)

- **Synarthroses** (Fibrous joints)
 - immovable joints
 - bones separated by fibrous tissue
 - e.g. sutures of skull
- **Amphiarthroses** (cartilaginous joints)
 - slightly movable joints
 - bones separated by cartilage disk
 - e.g. pubic symphysis, intervertebral disks

Articulations (Joints)

- **Diarthroses** (Freely movable joints)
 - Articular cartilage
 - Joint capsule
 - Synovial membrane
 - Synovial fluid
 - Lubricates joint surfaces
 - Distributes nutrients for cartilage
 - Absorbs shock in joints subjected to compression
 - Joint cavity
Diarthrotic Joints-Accessory Parts

- **Meniscus**: A pad of fibrocartilage situated between opposing bones within a synovial joint. These articular disks may subdivide a joint cavity, channel synovial fluid, or allow for variations in the shapes of articular surfaces.

- **Fat pads**: Localized masses of adipose tissue that protect articular cartilages and act as packing material.
Diarthrotic Joints-Accessory Parts

- **Ligaments** - The joint capsule that surrounds the entire joint is continuous with the periosteum of the articulating bones.
- **Accessory ligaments** are localized thickenings of the capsule that reinforce and strengthen the capsule and may also limit rotation of the joint.
- **Extracapsular ligaments** interconnect articulating bones and pass across the outside of the capsule and provide additional support to the wall of the joint.
- **Intracapsular ligaments** help to prevent extreme movements that might damage the joint.

Diarthrotic Joints-Accessory Parts

- **Tendon** - not part of the joint itself but in passing across or around joint, may limit movement or provide mechanical support.
- **Bursa** - a small, fluid-filled pocket in connective tissue. They may be connected to the joint cavity or completely separate. Form where structures rub together. They function to reduce friction and act as a shock absorber. (Bursitis)
Types of diarthrotic joints include: Hinge joints, pivot joints, ball & socket joints, etc.