FORECAST:
- A statement about the future value of a variable of interest such as demand.
- Forecasts affect decisions and activities throughout an organization
 - Accounting, finance
 - Human resources
 - Marketing
 - MIS
 - Operations
 - Product/service design

Uses of Forecasts

<table>
<thead>
<tr>
<th>Department</th>
<th>Uses of Forecasts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td>Cost/profit estimates</td>
</tr>
<tr>
<td>Finance</td>
<td>Cash flow and funding</td>
</tr>
<tr>
<td>Human Resources</td>
<td>Hiring/recruiting/training</td>
</tr>
<tr>
<td>Marketing</td>
<td>Pricing, promotion, strategy</td>
</tr>
<tr>
<td>MIS</td>
<td>IT/IS systems, services</td>
</tr>
<tr>
<td>Operations</td>
<td>Schedules, MRP, workloads</td>
</tr>
<tr>
<td>Product/service design</td>
<td>New products and services</td>
</tr>
</tbody>
</table>
3-5 Forecasting

- Assumes causal system
 \[\text{past} \rightarrow \text{future} \]
- Forecasts rarely perfect because of randomness
- Forecasts more accurate for groups vs. individuals
- Forecast accuracy decreases as time horizon increases

I see that you will get an A this semester.

3-6 Forecasting

Elements of a Good Forecast

- **Timely**
- **Reliable**
- **Accurate**
- **Meaningful**
- **Written**
- **Easy to use**

3-7 Forecasting

Steps in the Forecasting Process

1. Determine purpose of forecast
2. Establish a time horizon
3. Select a forecasting technique
4. Gather and analyze data
5. Prepare the forecast
6. Monitor the forecast

"The forecast"

3-8 Forecasting

Types of Forecasts

- **Judgmental** - uses subjective inputs
- **Time series** - uses historical data assuming the future will be like the past
- **Associative models** - uses explanatory variables to predict the future
Judgmental Forecasts
- Executive opinions
- Sales force opinions
- Consumer surveys
- Outside opinion
- Delphi method
 - Opinions of managers and staff
 - Achieves a consensus forecast

Time Series Forecasts
- **Trend** - long-term movement in data
- **Seasonality** - short-term regular variations in data
- **Cycle** – wavelike variations of more than one year’s duration
- **Irregular variations** - caused by unusual circumstances
- **Random variations** - caused by chance

Forecast Variations
- Irregular variation
- Seasonal variations

Naive Forecasts
Uh, give me a minute....

We sold 250 wheels last week.... Now, next week we should sell....

The forecast for any period equals the previous period’s actual value.
Naïve Forecasts

- Simple to use
- Virtually no cost
- Quick and easy to prepare
- Data analysis is nonexistent
- Easily understandable
- Cannot provide high accuracy
- Can be a standard for accuracy

Uses for Naïve Forecasts

- Stable time series data
 - \(F(t) = A(t-1) \)
 - Future = past
- Seasonal variations
 - \(F(t) = A(t-n) \)
 - Future = past season
- Data with trends
 - \(F(t) = A(t-1) + (A(t-1) - A(t-2)) \)
 - Future = past + difference from 2 time periods ago

Techniques for Averaging

- Moving average
- Weighted moving average
- Exponential smoothing

Moving Averages

- **Moving average** – A technique that averages a number of recent actual values, updated as new values become available.
 \[
 MA_n = \frac{\sum_{i=1}^{n} A_i}{n}
 \]
- **Weighted moving average** – More recent values in a series are given more weight in computing the forecast.
Simple Moving Average

Simple Moving Average (SMA) is a method for smoothing time series data by creating a series of averages of different subsets of the full data set. The formula for SMA is:

$$ MA_n = \frac{\sum_{i=1}^{n} A_i}{n} $$

Exponential Smoothing

Exponential Smoothing is a weighted averaging method based on previous forecast plus a percentage of the forecast error. The formula is:

$$ F_t = F_{t-1} + \alpha (A_{t-1} - F_{t-1}) $$

- **Premise:** The most recent observations might have the highest predictive value.
- Therefore, we should give more weight to the more recent time periods when forecasting.

Example 3 - Exponential Smoothing

<table>
<thead>
<tr>
<th>Period</th>
<th>Actual</th>
<th>Alpha = 0.1 Error</th>
<th>Alpha = 0.4 Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42</td>
<td>42 -2.00</td>
<td>42 -2</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>42 -2.00</td>
<td>42 -2</td>
</tr>
<tr>
<td>3</td>
<td>43</td>
<td>41.8 1.20</td>
<td>41.2 1.8</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>41.92 -1.92</td>
<td>41.92 -1.92</td>
</tr>
<tr>
<td>5</td>
<td>41</td>
<td>41.73 -0.73</td>
<td>41.15 -0.15</td>
</tr>
<tr>
<td>6</td>
<td>39</td>
<td>41.66 -2.66</td>
<td>41.09 -2.09</td>
</tr>
<tr>
<td>7</td>
<td>46</td>
<td>41.39 4.61</td>
<td>40.25 5.75</td>
</tr>
<tr>
<td>8</td>
<td>44</td>
<td>41.85 2.15</td>
<td>42.55 1.45</td>
</tr>
<tr>
<td>9</td>
<td>45</td>
<td>42.07 2.93</td>
<td>43.13 1.87</td>
</tr>
<tr>
<td>10</td>
<td>38</td>
<td>42.36 -4.36</td>
<td>43.88 -5.88</td>
</tr>
<tr>
<td>11</td>
<td>40</td>
<td>41.92 -1.92</td>
<td>41.53 -1.53</td>
</tr>
<tr>
<td>12</td>
<td>41.73</td>
<td>40.92 -1.53</td>
<td></td>
</tr>
</tbody>
</table>
Picking a Smoothing Constant

- \(\alpha = 0.1 \)
- \(\alpha = 0.4 \)

Common Nonlinear Trends

- Parabolic
- Exponential
- Growth

Linear Trend Equation

\[
F_t = a + bt
\]

- \(F_t \) = Forecast for period \(t \)
- \(t \) = Specified number of time periods
- \(a \) = Value of \(F_t \) at \(t = 0 \)
- \(b \) = Slope of the line

Calculating \(a \) and \(b \)

\[
b = \frac{n \sum (ty) - \sum t \sum y}{n \sum t^2 - (\sum t)^2}
\]

\[
a = \frac{\sum y - b \sum t}{n}
\]
Linear Trend Equation Example

<table>
<thead>
<tr>
<th>t</th>
<th>Week</th>
<th>(t^2)</th>
<th>Sales</th>
<th>(ty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>157</td>
<td>314</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>166</td>
<td>664</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>177</td>
<td>885</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>812</td>
<td>2499</td>
<td></td>
</tr>
</tbody>
</table>

\[\Sigma t = 15 \]
\[\Sigma t^2 = 55 \]
\[\Sigma y = 812 \]
\[\Sigma ty = 2499 \]

Linear Trend Calculation

\[b = \frac{5(2499) - 15(812)}{5(55) - 225} = \frac{12495 - 12180}{275 - 225} = 6.3 \]

\[a = \frac{812 - 6.3(15)}{5} = 143.5 \]

\[y = 143.5 + 6.3t \]

Associative Forecasting

- **Predictor variables** - used to predict values of variable interest
- **Regression** - technique for fitting a line to a set of points
- **Least squares line** - minimizes sum of squared deviations around the line

Linear Model Seems Reasonable

![Computed relationship](image.png)

A straight line is fitted to a set of sample points.
Forecast Accuracy

- Error - difference between actual value and predicted value
- Mean Absolute Deviation (MAD)
 - Average absolute error
- Mean Squared Error (MSE)
 - Average of squared error
- Mean Absolute Percent Error (MAPE)
 - Average absolute percent error

MAD, MSE, and MAPE

\[
\text{MAD} = \frac{\sum |\text{Actual} - \text{Forecast}|}{n}
\]

\[
\text{MSE} = \frac{\sum (\text{Actual} - \text{Forecast})^2}{n-1}
\]

\[
\text{MAPE} = \frac{\sum \left|\frac{\text{Actual} - \text{Forecast}}{\text{Actual}}\right| \times 100}{n}
\]

Example 10

| Period | Actual | Forecast | (A-F) | |\text{A-F}| | (A-F)^2 | (|A-F|/Actual)*100 |
|--------|--------|----------|-------|-------|----------------|-------|-----------------|
| 1 | 217 | 215 | 2 | 2 | 4 | 0.92 |
| 2 | 212 | 210 | -3 | -3 | 9 | 1.41 |
| 3 | 216 | 215 | 1 | 1 | 1 | 0.46 |
| 4 | 210 | 214 | -4 | -4 | 16 | 1.90 |
| 5 | 213 | 211 | 2 | 2 | 4 | 0.94 |
| 6 | 219 | 214 | 5 | 5 | 25 | 2.38 |
| 7 | 216 | 217 | -1 | -1 | 1 | 0.46 |
| 8 | 212 | 216 | -4 | -4 | 16 | 1.89 |
| 9 | 213 | 214 | -1 | -1 | 1 | 0.46 |
| 10 | 216 | 217 | -1 | -1 | 1 | 0.46 |

\[
\text{MAD} = 2.75
\]

\[
\text{MSE} = 10.86
\]

\[
\text{MAPE} = 1.28
\]

Controlling the Forecast

- Control chart
 - A visual tool for monitoring forecast errors
 - Used to detect non-randomness in errors
- Forecasting errors are in control if
 - All errors are within the control limits
 - No patterns, such as trends or cycles, are present
Sources of Forecast errors

- Model may be inadequate
- Irregular variations
- Incorrect use of forecasting technique

Tracking Signal

- Tracking signal
 - Ratio of cumulative error to MAD

\[
\text{Tracking signal} = \frac{\sum (\text{Actual} - \text{forecast})}{\text{MAD}}
\]

Bias – Persistent tendency for forecasts to be greater or less than actual values.

Choosing a Forecasting Technique

- No single technique works in every situation
- Two most important factors
 - Cost
 - Accuracy
- Other factors include the availability of:
 - Historical data
 - Computers
 - Time needed to gather and analyze the data
 - Forecast horizon

Exponential Smoothing

![Exponential Smoothing Chart]
Linear Trend Equation

<table>
<thead>
<tr>
<th></th>
<th>Actual</th>
<th>Forecast</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42</td>
<td>41.627222</td>
<td>0.627222</td>
</tr>
<tr>
<td>2</td>
<td>52</td>
<td>52.472222</td>
<td>52.472222</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>61.127222</td>
<td>61.127222</td>
</tr>
<tr>
<td>4</td>
<td>54</td>
<td>53.472222</td>
<td>3.472222</td>
</tr>
<tr>
<td>5</td>
<td>55</td>
<td>54.722222</td>
<td>0.722222</td>
</tr>
<tr>
<td>6</td>
<td>65</td>
<td>65.072222</td>
<td>0.072222</td>
</tr>
<tr>
<td>7</td>
<td>60</td>
<td>59.472222</td>
<td>0.527778</td>
</tr>
<tr>
<td>8</td>
<td>56</td>
<td>56.722222</td>
<td>0.277778</td>
</tr>
<tr>
<td>9</td>
<td>42</td>
<td>42.472222</td>
<td>0.527778</td>
</tr>
</tbody>
</table>

Slope: 0.72
Intercept: 45.472222
MAE: 1.66
MSE: 5.28

Simple Linear Regression

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>x̄</th>
<th>ȳ</th>
<th>x-x̄</th>
<th>y-ȳ</th>
<th>x,x̄</th>
<th>y,ȳ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>15</td>
<td>4.67</td>
<td>9.27</td>
<td>-3.67</td>
<td>-1.27</td>
<td>3.67</td>
<td>2.67</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>20</td>
<td>4.67</td>
<td>9.27</td>
<td>0.33</td>
<td>0.73</td>
<td>0.33</td>
<td>0.73</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>30</td>
<td>4.67</td>
<td>9.27</td>
<td>-3.67</td>
<td>8.73</td>
<td>3.67</td>
<td>8.73</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>20</td>
<td>4.67</td>
<td>9.27</td>
<td>0.33</td>
<td>0.73</td>
<td>0.33</td>
<td>0.73</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>40</td>
<td>4.67</td>
<td>9.27</td>
<td>-3.67</td>
<td>9.73</td>
<td>3.67</td>
<td>9.73</td>
</tr>
</tbody>
</table>

R²: 0.99